Search results for "FIELD-EFFECT TRANSISTORS"

showing 10 items of 18 documents

High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric

2008

Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO$_{2}$ and T…

NanotubeGate dielectricGeneral Physics and AstronomyFOS: Physical sciencesCarbon nanotubeDielectriclaw.inventionCondensed Matter::Materials ScienceComputer Science::Emerging TechnologieslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular ClustersThin filmCNT FETsPhysicsCondensed Matter - Materials Sciencecarbon nanotubesCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryPhysicsTransistorfield-effect transistorsMaterials Science (cond-mat.mtrl-sci)HysteresishysteresisOptoelectronicsField-effect transistorbusiness
researchProduct

Random Structural Modification of a Low-Band-Gap BODIPY-Based Polymer

2017

International audience; A BODIPY thiophene polymer modified by extending conjugation of the BODIPY chromophore is reported. This modification induces tunability of energy levels and therefore absorption wavelengths in order to target lower energies.

Materials scienceBand gapthin-film transistors02 engineering and technology010402 general chemistryPhotochemistry[ CHIM ] Chemical Sciences01 natural scienceschemistry.chemical_compoundmolecular-orbital methodsorganometallic compounds[CHIM]Chemical SciencesPhysical and Theoretical Chemistrydensity-functional theoryAbsorption (electromagnetic radiation)valence basis-setsdistyryl-boradiazaindaceneschemistry.chemical_classificationPolymer modifiedfield-effect transistorspi-conjugated copolymers[CHIM.MATE]Chemical Sciences/Material chemistryPolymerChromophore021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsWavelengthsolar-cellsGeneral Energychemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryextended basis-setsBODIPY0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films for advanced performance transistors

2005

Solution processed Langmuir-Scha ̈fer and cast thin films of regioregular poly(2,5-dioctyloxy-1,4- phenylene-alt-2,5-thienylene) are investigated as transistor active layers. The study of their field-effect properties evidences that no transistor behavior can be seen with a cast film channel material. This was not surprising considering the twisted conformation of the polymer backbone predicted by various theoretical studies. Strikingly, the Langmuir-Scha ̈fer (LS) thin films exhibit a field-effect mobility of 5 × 10-4 cm2/V‚s, the highest attained so far with an alkoxy-substituted conjugated polymer. Extensive optical, morphological, and structural thin-film characterization supports the a…

LangmuirMaterials sciencePHENYLENEGeneral Chemical EngineeringNanotechnologylaw.inventionlawPhenyleneSTILLE COUPLING REACTIONMaterials ChemistryThin filmConductive polymerbusiness.industryREGIOREGULAR POLY(3-HEXYLTHIOPHENE)TransistorGeneral ChemistryOPTICAL-PROPERTIESSolution processedBLODGETT-FILMSCONDUCTING POLYMERSOptoelectronicsField-effect transistorPOLYTHIOPHENESFIELD-EFFECT TRANSISTORSREPEAT UNITSbusinessCONJUGATED POLYMERS
researchProduct

Efficiency comparison between SiC- and Si-based active neutral-point clamped converters

2015

This paper presents an efficiency comparison between silicon-carbide technology and silicon technology. In order to achieve this, the efficiency of an active neutral-point clamped converter built up with silicon carbide power-devices is compared with the efficiency of an active neutral-point clamped converter built up with silicon power-devices, under a particular operating mode and a particular selection of devices. Firstly, overall losses of both converters are estimated. Then, experimental tests are carried out to measure their overall losses and efficiency. Finally, experimental results are compared with the estimations to support the analysis. The efficiency of the SiC converter is hig…

Materials scienceSiliconchemistry.chemical_elementTransistorschemistry.chemical_compoundMOSFETSilicon carbideElectronic engineeringMetal oxide semiconductor field-effect transistorsSiC MOSFETPoint (geometry)Metal oxide semiconductorsTransistors MOSFETbusiness.industryWide-bandgap semiconductor:Enginyeria electrònica [Àrees temàtiques de la UPC]ConvertersMetall-òxid-semiconductorschemistryefficiencyEfficiency comparisonactive neutral-point clampedOptoelectronicswide band gapbusinessSiC technologymultilevel conversion
researchProduct

Mapping brain activity with flexible graphene micro-transistors

2016

arXiv:1611.05693v1.-- et al.

0301 basic medicineMaterials scienceFOS: Physical sciences02 engineering and technologylaw.invention03 medical and health scienceslawGeneral Materials ScienceElectronicsPhysics - Biological PhysicsNeural implantsBioelectronicsBioelectronicsbusiness.industryGrapheneSensorsMechanical EngineeringTransistorGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsField-effect transistorsMicroelectrodeBrain implant030104 developmental biologyBiological Physics (physics.bio-ph)Mechanics of MaterialsFOS: Biological sciencesQuantitative Biology - Neurons and CognitionOptoelectronicsNeurons and Cognition (q-bio.NC)Charge carrierField-effect transistorGraphene0210 nano-technologybusiness2D Materials
researchProduct

Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells

2017

International audience; Advances in the synthesis and application of highly efficient polymers and small molecules over the last two decades have enabled the rapid advancement in the development of organic solar cells and photovoltaic technology as a promising alternative to conventional solar cells, based on silicon and other inorganic semiconducting materials. Among the different types of organic semiconducting materials, porphyrins and BODIPY-based small molecules and conjugated polymers attract high interest as efficient semiconducting organic materials for dye sensitized solar cells and bulk heterojunction organic solar cells. The highest power conversion efficiency exceeding 9% has be…

Materials scienceOrganic solar cellEnergy Engineering and Power Technologypower-conversion efficiency02 engineering and technologydonor materials010402 general chemistryporphyrins7. Clean energy01 natural sciencesPolymer solar cellbulk heterojunction solar cellsphotoinduced electron-transferchemistry.chemical_compoundBODIPYElectrical and Electronic Engineeringsmall-moleculelow-bandgap polymerbusiness.industryfield-effect transistors[CHIM.MATE]Chemical Sciences/Material chemistryHybrid solar cellpi-conjugated copolymersd-a021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialsphotovoltaic propertieschemistryopen-circuit voltage[ CHIM.MATE ] Chemical Sciences/Material chemistryOptoelectronicsorganic photovoltaicsBODIPY0210 nano-technologybusiness
researchProduct

Electrical and optical properties of Graphene Field-Effect Transistors (GFETs) fabricated on sapphire

Graphene CVD Graphene Graphene Field-Effect Transistors (GFETs) Microwave measurements on GFETsSettore ING-INF/01 - Elettronica
researchProduct

Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study

2019

In this work, we report on a comparison among graphene field-effect transistors (GFETs) employing different dielectrics as gate layers to evaluate their microwave response. In particular, aluminum oxide (Al$_{2}$O$_{3}$), titanium oxide (TiO$_{2}$), and hafnium oxide (HfO$_{2}$) have been tested. GFETs have been fabricated on a single chip and a statistical analysis has been performed on a set of 24 devices for each type of oxide. Direct current and microwave measurements have been carried out on such GFETs and short circuit current gain and maximum available gain have been chosen as quality factors to evaluate their microwave performance. Our results show that all of the devices belonging …

TechnologyMaterials scienceGeneral Chemical EngineeringOxide02 engineering and technologyDielectricSettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesArticlelaw.inventionlcsh:Chemistrychemistry.chemical_compoundlawGraphene Field-Effect Transistors Microwaves Oxide Films0103 physical sciences010302 applied physicsbusiness.industryGrapheneDirect currentTransistorGeneral Chemistry021001 nanoscience & nanotechnologyTitanium oxidelcsh:QD1-999chemistry2018-020-021849ALDOptoelectronicsGraphene0210 nano-technologybusinessddc:600Short circuitMicrowaveACS Omega
researchProduct

Bias and humidity effects on the ammonia sensing of perylene derivative/lutetium bisphthalocyanine MSDI heterojunctions

2016

International audience; In this paper, we prepared and studied sensors based on Molecular Semiconductor-Doped Insulator (MSDI) heterojunctions. These original devices are built with two stacked layers of molecular materials and exhibit very specific electrical and sensing properties. We studied the properties of a MSDI composed of the perylenetetracarboxylic dianhydride, PTCDA, or the fluorinated perylenebisimine derivative, C4F7-PTCDI, as n-type molecular material sublayers, and LuPc2 as a p-type semiconductor top layer. Their response to ammonia was compared to that of a resistor formed of only the top layer of the MSDI (LuPc2). Ammonia increases the current in the MSDIs whereas it causes…

MSDIAir quality monitoringAbsorption spectroscopyInorganic chemistryAnalytical chemistryConductometric sensor02 engineering and technology010402 general chemistrysensors[ CHIM ] Chemical Sciences01 natural sciencesLangmuir–Blodgett filmchemistry.chemical_compoundAmmoniaMaterials Chemistry[CHIM]Chemical SciencesRelative humiditygas sensitivitymolecular semiconductorsElectrical and Electronic EngineeringThin filmPerylenetetracarboxylic dianhydrideInstrumentationelectrical-propertiesabsorption-spectracomplexesbusiness.industryfield-effect transistorsMetals and AlloysHeterojunctionRelative humidity021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsphthalocyanineSemiconductorchemistryOrganic heterojunctionthin-filmslangmuir-blodgett0210 nano-technologybusinessPerylene
researchProduct

Investigation on Metal–Oxide Graphene Field-Effect Transistors With Clamped Geometries

2019

In this work, we report on the design, fabrication and characterization of Metal-Oxide Graphene Field-effect Transistors (MOGFETs) exploiting novel clamped gate geometries aimed at enhancing the device transconductance. The fabricated devices employ clamped metal contacts also for source and drain, as well as an optimized graphene meandered pattern for source contacting, in order to reduce parasitic resistance. Our experimental results demonstrate that MOGFETs with the proposed structure show improved high frequency performance, in terms of maximum available gain and transition frequency values, as a consequence of the higher equivalent transconductance obtained.

Work (thermodynamics)FabricationMaterials scienceTransconductanceOxide02 engineering and technologySettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionchemistry.chemical_compoundlaw0103 physical sciencesElectrical and Electronic Engineering010302 applied physicsbusiness.industryGrapheneGraphene metal-oxide graphene field-effect transistors (MOGFETs) microwave transistors clamped geometries meandered graphene contacts.TransistorSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyElectronic Optical and Magnetic MaterialschemistryLogic gateParasitic elementOptoelectronics0210 nano-technologybusinessBiotechnologyIEEE Journal of the Electron Devices Society
researchProduct